Reg. No.				

G. VENKATASWAMY NAIDU COLLEGE (AUTONOMOUS), KOVILPATTI - 628 502.

UG DEGREE END SEMESTER EXAMINATIONS - APRIL 2025.

(For those admitted in June 2023 and later)

PROGRAMME AND BRANCH: B.C.A.

	SEM	CATEGORY	COMPONENT	COURSE CODE	COURSE TITLE
	IV	PART-III	ELECTIVE GENERIC-4	U23CA4A4	DIGITAL LOGIC
IV PARI-III	PARI-III	ELECTIVE GENERIC-4	U23CA4A4	FUNDAMENTALS	
	Date & Session: 03.05.2025 / AN Time: 3 hours Maximum: 75 Marks				

Date	Co Desi	<u> </u>	3.05.2025 / AN Time : 3 hours	Maximum: 75 Marks	
Course Outcome	Bloom's K-level	Q. No.	<u>SECTION - A (10 X 1 = 10 M</u> Answer <u>ALL</u> Questions.	•	
CO1	K1	1.	The code where all successive numbers differ from t	heir preceding number by	
			single bit is		
			a) Alphanumeric Code b) BCD		
			c) Excess 3 d) Gray Which of the following is a universal logic gate?		
CO1	K2	2.	Which of the following is a universal logic gate?		
			a) AND b) OR		
			c) NAND d) NOR		
CO2	K1	3.	How many AND gates are required to realize Y = CD) + EF + G?	
			a) 2 b) 3		
			c) 4 d) 5		
CO2	K2	4.	A Karnaugh map (K-map) is an abstract form of	diagram	
			organized as a matrix of squares.		
			a) Venn Diagram b) Cycle Diagr	ram	
			c) Block diagram d) Triangular		
CO3	K1	5.	The expression Y=AB+BC+AC shows the o	peration.	
			a) EX-OR b) SOP	1	
			c) POS d) NOR		
CO3	K2	6.	Which of the following is not a binary number?		
			a) 1111 b) 101		
			c) 11E d) 000		
CO4	K1	7.	What could be the maximum value of a single digit i	n an octal number system?	
			a) 8 b) 7		
			c) 6 d) 5		
CO4	K2	8.	The binary number 1110 in hexadecimal format is _		
			a) 6 b) E		
			c) 14 d) 15		
CO5	K1	9.	2's complement of 11001011 is		
			a) 01010111 b) 11010100		
			c) 00110101 d) 11100010		
CO5	K2	10.	The basic building blocks of the arithmetic unit in d	igital computers are .	
			a) Subtractors b) Adders		
			c) Multiplexer d) Comparator	:	
Course	Bloom's K-level	Q. No.	$\frac{\text{SECTION} - B \text{ (5 X 5 = 25 Marks)}}{\text{Answer } \underline{\text{ALL }} \text{Questions choosing either (a) or (b)}}$		
CO1	КЗ	11a.	Determine the function of AND gate and OR gate.		
001	W2	111	(OR) Discover the function of NAND gate and NOR gate.		
CO1	КЗ	11b.	Discover the function of Main gate and NOR gate.		

CO2	КЗ	12a.	Minimize the following algebraic equation using the Karnaugh Map K Map.	
			$F = \bar{a}\bar{b}\bar{c} + \bar{a}\bar{b}c + a\bar{b}\bar{c} + a\bar{b}c$	
			(OR)	
CO2	КЗ	12b.	Show Karnaugh Map K Map for the following equation and derive the	
			simplified equation.	
			$F(A,B,C,D) = \sum m(7) + d(10,11,12,13,14,15)$	
CO3	K4	13a.	Convert 23.6 to a binary number.	
			(OR)	
CO3	K4	13b.	If binary numbers are given as 10101110, what are the steps to convert a given	
			binary number to its decimal equivalent.	
CO4	K4	14a.	If a hexadecimal number given as (A2B) ₁₆ what are the steps to convert a given	
			hexadecimal number to its binary equivalent.	
201			(OR)	
CO4	K4	14b.	Show the 8-bit addition of these decimal numbers in 2's complement	
			representation.	
			a) +83, +16 b) +125,-68	
CO5	K5	15a.	Express -19,750 in 2's complement representation, use hexadecimal notation	
			to compress the data.	
			(OR)	
CO5	K5	15b.	Show how a half adder circuit can be realized.	

Course Outcome	Bloom's K-level	Q. No.	$\frac{\text{SECTION} - C}{\text{Answer ALL Questions choosing either (a) or (b)}}$	
CO1	КЗ	16a.	State and prove DeMorgan's laws using truth table and necessary logic circuits. (OR)	
CO1	КЗ	16b.	How can we construct AND, OR, NOT using NAND and NOR gates. Explain.	
CO2	K4	17a.	Simplify the following Boolean function in sum of product form $F(A,B,C,D) = \sum_{m=0}^{\infty} m(0,2,3,4,6,7,8,10,11,15)$ and draw the logic circuit. (OR)	
CO2	K4	17b.	Analyze pair, quad and octets of K-map used to simplified the Boolean .	
CO3	K4	18a.	Find the POS form and minimize it. $F = \Pi(0, 1, 3)$ and draw the logic circuit. (OR) Analyze the binary to decimal conversion with suitable example.	
CO3	K4	18b.		
CO4	K5	19a.	Convert the following. a)(175) ₁₀ = (?) ₈ b)(0.23) ₁₀ =(?) ₈ c) (F8E6.39) ₁₆ =(?) ₁₀ d) (2479) ₁₀ =(?) ₁₆ (OR)	
CO4	K5	19b.	Add these 16-bit numbers. 0000 1111 1010 1100 and 0011 1000 0111 1111. Show the corresponding hexadecimal and decimal numbers.	
CO5	K5	20a.	Assess the function of full Adder circuit.	
CO5	K5	20b.	Evaluate the function of binary adder- subtractor.	